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Power-law distributions and Lévy-stable intermittent fluctuations in stochastic systems
of many autocatalytic elements
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~Received 28 December 1998!

A generic model of stochastic autocatalytic dynamics with many degrees of freedomwi , i 51, . . . ,N, is
studied using computer simulations. The time evolution of thewi ’s combines a random multiplicative dynam-
ics wi(t11)5lwi(t) at the individual level with a global coupling through a constraint which does not allow

the wi ’s to fall below a lower cutoff given bycw̄, wherew̄ is their momentary average and 0,c,1 is a
constant. The dynamic variableswi are found to exhibit a power-law distribution of the formp(w);w212a.
The exponenta(c,N) is quite insensitive to the distributionP(l) of the random factorl, but it is nonuni-
versal, and increases monotonically as a function ofc. The ‘‘thermodynamic’’ limit N˜` and the limit of
decoupled free multiplicative random walksc˜0 do not commute:a(0,N)50 for any finite N while

a(c,`)>1 ~which is the common range in empirical systems! for any positivec. The time evolution ofw̄(t)
exhibits intermittent fluctuations parametrized by a~truncated! Lévy-stable distributionLa(r ) with the same
index a. This nontrivial relation between the distribution of thewi ’s at a given time and the temporal
fluctuations of their average is examined, and its relevance to empirical systems is discussed.
@S1063-651X~99!09707-X#

PACS number~s!: 05.40.2a, 05.70.Ln, 02.50.2r
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I. INTRODUCTION

The origins of power-law distributions as well as the
conceptual implications have been an active topic of rese
in recent years. Power laws are intrinsically related to
emergence of macroscopic features which are scale inva
within some bounds, and distinct from the microscopic
ementary degrees of freedom. Often, these features ar
sensitive to the details of the microscopic structures. W
known examples of power-law distributions include the e
ergy distribution between scales in turbulence@1#, the distri-
bution of earthquake magnitudes@2#, the diameter distribu-
tion of craters and asteroids@3#, the distribution of city
populations@4,5#, the distributions of income and of wealt
@6–12#, the size distribution of business firms@13,14# and the
distribution of the frequency of appearance of words in te
@4#. The fact that multiplicative dynamics tends to gener
power-law distributions was intuitively invoked long ag
@13,15–17#, but the limitations in computer simulation powe
kept the models under the constraints imposed by the ap
cability of analytical treatment. More recently, a broad
class of models has been studied combining computer s
lations with theoretical analysis within the microscopic re
resentation paradigm proposed in Ref.@18#. In particular, it
was shown@19–21# that power laws appear in a variety o
dynamical processes, and are maintained even under h
nonstationary conditions.

In this paper we consider a generic model of stocha
dynamics with many degrees of freedomwi(t), i
51, . . . ,N. The time evolution of thewi ’s is described by an
asynchronous update mechanism in which at each time
one variable is chosen randomly and is multiplied by a fac
l taken from a predefined distribution. In addition, there i
global coupling constraint which does not allow thewi ’s to
fall below the lower cutoff given bycw̄, where w̄ is the
momentary average of thewi ’s and 0,c,1 is a constant.
PRE 601063-651X/99/60~2!/1299~5!/$15.00
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The dynamic variableswi are found to exhibit a power-law
distribution of the formp(w);w212a. The exponenta is
found to be insensitive to the distributionP(l) of the ran-
dom factorl. However,a is nonuniversal, and increase
monotonically as a function ofc. In the limit c50 ~where
the wi ’s become decoupled!, a50 for any finite N. How-
ever, in the ‘‘thermodynamic’’ limitN5`, a>1 for any
positive c. Thus the two limits do not commute. This is im
portant for applications since typically in empirical system
a>1 @1–14# unlike the case of the free multiplicative ran
dom walk which predicts a log-normal distribution@22,23#
corresponding toa50 @24#.

The time evolution ofw̄(t) exhibits intermittent fluctua-
tions parametrized by a truncated Le´vy-stable distribution
with the same indexa. This intricate relation between th
distribution of thewi ’s at a given time and the tempora
fluctuations of their average is examined, and its relevanc
empirical systems is discussed. Our model indicates tha
certain cases the scaling exponent may be insensitive to
distribution of the multiplicative~random! factor l, and de-
pends only on the ‘‘lower bound’’ features which control th
smallest values of the elementary variables. The relation
tween the limiting conditions and the power-law exponen
to be applied in each particular case, and it constitute
strong instrument in identifying and validating the releva
degrees of freedom responsible for the emergence of sca

The present paper proposes to consolidate by nume
simulations the control one has on a specific model, and h
in this way its further application to additional systems. T
paper is organized as follows. In Sec. II we present
model. Simulations and results are reported in Sec. III, f
lowed by a discussion in Sec. IV and a summary in Sec.

II. MODEL

A. Formal definition

The model@19,20# describes the evolution in discrete tim
of N dynamic variableswi(t), i 51, . . . ,N. At each time
1299 © 1999 The American Physical Society
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step t, an integeri is chosen randomly in the range 1< i
<N, which is the index of the dynamic variablewi to be
updated at that time step. A random multiplicative fac
l(t) is then drawn from a given distributionP(l), which is
independent ofi and t and satisfies*lP(l)dl51. This can
be, for example, a uniform distribution in the rangelmin
<l<lmax, wherelmin and lmax are predefined limits. The
system is then updated according to the following stocha
time evolution equation:

wi~ t11!5l~ t !wi~ t !,

wj~ t11!5wj~ t !, j 51, . . . ,N, j Þ i . ~1!

This is an asynchronous update mechanism. The ave
value of the system components at timet is given by

w̄~ t !5
1

N (
i 51

N

wi~ t !. ~2!

The term on the right hand side of Eq.~1! describes the
effect of autocatalysis at the individual level. In addition
the update rule of Eq.~1!, the value of the updated variab
wi(t11) is constrained to be larger than or equal to so
lower bound which is proportional to the momentary avera
value of thewi ’s according to

wi~ t11!>cw̄~ t !, ~3!

where 0<c,1 is a constant factor. This constraint is im
posed immediately after step~1! by setting

wi~ t11!˜max$wi~ t11!,cw̄~ t !%, ~4!

wherew̄(t), evaluated just before the application of Eq.~1!,
is used. This constraint describes the effect of autocatal
at the community level.

B. Main features

Our model is characterized by a fixed~conserved! number
of dynamic variablesN, while the sum of their values is no
conserved. The conservation of the number of dynamic v
ables, which is enforced through the lower cutoff constra
is essential since otherwise the system dwindles over ti
The nonconservation of the sum of the values of the dyna
variables is important as well. It allows us to perform t
multiplicative updating on a single variable at a time with
explicit binary interactions, since a gain inwi does not re-
quire a corresponding immediate loss by otherwj ’s. In fact,
the interactions between the dynamic variables are imp
only in the step of Eq.~4! in which the lower cutoff is im-
posed. The dynamic rule~1! can be described by a mast
equation for the probability distributionp(w) of the form

p~w,t11!2p~w,t !5
1

N F E
l
P~l!p~w/l,t !dl2p~w,t !G

~5!

where the 1/N factor takes into account the fact that only o
of the wi ’s is updated in each time step. This descripti
applies for the bulk of the distribution of thewi ’s but not in
r
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the vicinity of the lower cutoff where the step of Eq.~4!
which is not taken into account by Eq.~5! may be dominant.

For the following analysis it is convenient to normaliz
the wj ’s according to

wj~ t !˜wj~ t !/w̄~ t !, j 51, . . . ,N. ~6!

As a result, the new averagew̄(t) is normalized to

w̄~ t !5E
c

N

wp~w,t !dw51, ~7!

while ( iwi(t)5Nw̄5N. Performing this normalization ste
after each iteration removes the nonstationary part of
distribution, and amounts statistically to an overall multip
cative factor. This~time dependent! factor which represents a
global inflation rate can be recorded at each step. It is c
venient to represent the dynamics@Eq. ~5!# on a logarithmic
scale. In terms of the new variables,

Wi5 ln wi , ~8!

Eq. ~1! defines a random walk with steps of random size lnl:

Wi~ t11!5Wi~ t !1 ln l. ~9!

The corresponding probability distributionP(W) becomes

P~W!5eWp~eW!. ~10!

In terms ofP andW, the master equation~5! becomes

P~W,t11!2P~W,t !

5
1

NF E
l
P~l!P~W2 lnl,t !dl2P~W,t !G .

~11!

The asymptotic stationary solution, is found to be@19#

P~W!;e2aW. ~12!

In terms of the original variablewi , according to Eq.~10! we
obtain a power-law distribution

p~w!5Kw212a. ~13!

The value of the exponenta is determined by the normaliza
tion condition@Eq. ~7!# divided by the probability normaliza
tion condition *c

Np(w,t)dw51 ~in order to eliminate the
constant factorK), which yields

N5
a21

a F S c

ND a

21

S c

ND a

2S c

ND G . ~14!

The exponenta is given implicitly as a function ofc andN
by Eq. ~14!. We identify two regimes within 0<c,1 in
which Eq. ~14! can be simplified anda can be obtained
explicitly. For a givenN and values ofc in the range 1/lnN
!c,1, one obtainsa.1 as well as (c/N)a!c/N!1. Con-
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sequently, in this range, one can neglect the (c/N)a terms in
Eq. ~14! to obtain to a good approximation

N5
a21

a F 21

2S c

ND G . ~15!

which gives the explicit,N-independent solution

a>
1

12c
. ~16!

This relation is exact in the ‘‘thermodynamic’’ limitN5`.
Relation~16! has two remarkable properties:~a! it does not
depend on the distributionP(l), and ~b! it gives rise toa
values in the experimentally realistic rangea>1.

For finiteN and values ofc lower than 1/lnN, the approxi-
mation equation~16! breaks down and valuesa,1 become
possible. However, for any finiteN, another approximation
holds in the rangec!1/N,1. In this range (c/N)!(c/N)a

!1, and therefore one can neglect (c/N)a in the numerator
of Eq. ~14! andc/N in the denominator to obtain

N5
a21

a F 21

S c

ND aG . ~17!

By taking the logarithm on both sides and neglecting ter
of order 1, we obtain

a>
ln N

ln~N/c!
. ~18!

Note that even for systems in which the lower bound~which
is due to some microscopic discretization! given by c, is
orders of magnitude smaller than 1/N, the resultinga may
differ significantly from the free multiplicative random wal
resulta50. Sincec enters into formula~18! for a through
its logarithm, the system gives away information on its m
croscopic scale cutoffc through the exponenta of its mac-
roscopic power-law behavior.

One should emphasize that in the region wherea,1, the
averagew̄ of the distributionp(w) in Eq. ~7! is not well
defined, and in fact in the actual runs one expects very w
macroscopic fluctuations of this mean. However, these fl
tuations are never infinite because, according to the form
above, as one increases the size of the systemN, the region
along thec axis wherea,1 shrinks to 0. For 1,a,2, it is
only the standard deviation of the distributionp(w) which is
formally divergent. This gives rise in the actual compu
simulations to wide fluctuations of the individual values
wi . However, this divergence is also kept in check by
fact that nowi can possibly exceedNw̄, namely, p(Nw̄)
50. This amounts to atruncation from aboveof the power-
law equation~13!.

III. NUMERICAL SIMULATIONS AND RESULTS

Numerical simulations of the stochastic multiplicativ
process described by Eqs.~1! and~4!, confirm the validity of
Eq. ~13! for a wide range of lower boundsc. It appears that
s
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e

the exponenta is largely independent of the shape of th
probability distributionP(l). Figure 1 shows the distribu
tion of wi , i 51, . . . ,N, obtained forN51000, c50.3, and
l uniformly distributed in the range 0.9<l<1.1. A power-
law distribution is found for a range of three decades
tween wmin50.0003 andwmax50.3. The slope of the bes
linear fit within this range is given bya51.4, in agreement
with Eqs.~14! and~16!. On the horizontal axis of this grap
the sum of allwi ’s is normalized to 1, and thereforew̄
50.001. The exponenta as a function of the lower cutoffc
is shown in Fig. 2. Numerical results are presented forN
5100~empty dots!, 1000~full dots!, and 5000~squares!. The
prediction of Eq.~14! is shown forN51000 ~solid line!,
which is in good agreement with the numerical results for
values ofc. The approximate expression@Eq. ~16!# is also
shown ~dashed line!. It is observed that forN51000 this
approximation gradually starts to hold asc is increased be-
yond 1/ln(1000), in agreement with the theoretical analy
In general, for a givenN, a is monotonically increasing as
function ofc, starting froma50 ~which corresponds to 1/w
distribution! at c50, where thewi ’s are uncoupled. It is also
observed that asN is raised, the value ofa which corre-
sponds to a givenc increases monotonically. As a result, th
range of validity 1/lnN!c,1 of the approximation@Eq.
~16!# is extended, and the knee adjacent toc50 sharpens
and becomes a discontinuity forN˜`. The range 0!c
,1/N, in which the approximation of Eq.~18! is valid,
shrinks correspondingly.

Let us turn now to the dynamics of the system as a who
The dynamics of the system involves, according to Eq.~1!, a
generalized random walk with step sizes distributed acco
ing to Eq.~13!. Therefore, the stochastic fluctuations ofw̄(t)
after t time steps,

r ~t!5
w̄~ t1t!2w̄~ t !

w̄~ t !
, ~19!

FIG. 1. The distribution of the variableswi , i 51, . . . ,N, for
N51000 obtained from a numerical simulation of the model giv
by Eqs. ~1! and ~4! with the lower cutoffc50.3 andP(l) uni-
formly distributed in the range 0.9,l,1.1. The distribution~pre-
sented here on a log-log scale! exhibits a power-law behavior de
scribed byp(w);w212a, wherea51.4.
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are governed@25# by a truncated Le´vy distributionLa(r ).
In Fig. 3 we show the distribution of the stochastic flu

tuationsr (t) for t550, which is given by a~truncated! Lévy
distribution La(r ). According to Ref.@26#, the peak of the
~truncated! Lévy-stable distribution scales witht as

La~r 50!;t21/a, ~20!

wherea is the index of the Le´vy distribution. In Fig. 4 we
show the height of the peakP(r 50) of Fig. 3 as a function
of t. It is found that the slope of the fit in Fig. 4 is20.71,
which, following the scaling relation~20!, means that the
index of the Lévy distribution in Fig. 3 isa521/(20.71)
51.4. These results were obtained for the same param
which gave rise to the power-law distribution witha51.4 in

FIG. 2. The exponenta of the power-law distribution of the
variableswi , i 51, . . . ,N as a function of the lower cutoffc. The
data were obtained from the simulations of the multiplicative s
chastic process of Eqs.~1! and~4! with N5100 ~empty dots!, 1000
~full dots!, and 5000~squares!. The theoretical prediction of Eq
~14! is shown forN51000 ~solid line!, and is in excellent agree
ment with the numerical values for all values ofc. The approximate
expression of Eq.~16! is also shown~dashed line!.

FIG. 3. The distribution of the variations ofw̄ after t steps

r (t)5@w̄(t1t)2w̄(t)#/w̄(t), wheret550, for the same param
eters as in Fig. 1. This distribution has a Le´vy-stable shape with
index a51.4.
ers

Fig. 1. Thus the prediction that the fluctuations ofw̄ in Fig.
3 follow a ~truncated! Lévy-stable distribution, with an index
a which equals the exponenta of the power-law distribution
in Fig. 1, is confirmed.

IV. DISCUSSION

The model considered in this paper may be relevant t
variety of empirical systems in the physical, biological, a
social sciences which can be described by a set of interac
dynamic variables which follow a stochastic multiplicativ
dynamics. Such dynamical processes may play a role in
formation of the mass distribution in the universe whe
clusters of galaxies accumulate and eventually form sup
clusters. In a different context, the growth of cities is ba
cally a multiplicative process governed by the reproduct
rate of the local population in addition to mobility betwee
cities.

Enhanced diffusion processes, which can be describe
the Lévy-stable distribution, have been observed in a vari
of nonlinear dynamical systems@27,28#. Unlike the stochas-
tic model studied here, these systems are governed by d
ministic rules. They exhibit intermittent chaotic motio
which gives rise to enhanced diffusion.

In population dynamics, the number of individuals in ea
species varies stochastically from one season to the next
a multiplicative factor which depends on the local con
tions. The lower bound may represent the minimal num
of individuals required for the species to survive in the giv
environment. In this case the number of species may no
strictly a constant, but species that are wiped out may
replaced by others which invade their area. In this contex
was found that the number of species of a given size o
follows a decreasing power-law distribution as a function
their size~see, e.g., Ref.@29#!.

In the economic context of a stock market system
dynamic variableswi , i 51, . . . ,N, may represent the
wealth of individual investors. In this case the dynamics re
resents the increase~or decrease! by a random factorl(t) of

-

FIG. 4. The scaling witht of the probability thatr (t)5@w̄(t

1t)2w̄(t)#/w̄(t) is 0. The parameters of the process are the sa
as in Figs. 1 and 3. The slope of the straight line on the logarith
scale is 0.71, which corresponds to a Le´vy-stable process witha
51/0.7151.4.



i
en
o
di

th
cly

u

te

k
a

th

T
x-

m-
of

ata-
ter

e
In
nd
a

e a
pu-

s

ua-
iri-
be-
ck
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the wealthwi of the investori between timest andt11. The
lower bound may represent a minimal wealth required
order to participate in stock market trading. In a more g
eral economic model, this lower bound may be related t
basket of basic publicly funded services which every in
vidual receives. In another possible interpretation, thewi ’s
represent the capitalization~total market value! of the firm i,
which may increase~or decrease! by a factorl(t) at each
time step. In this case the lower bound may represent
minimal requirements for a company stock to be publi
traded.

Studies of the distribution of wealth in the general pop
lation revealed a power-law behavior~see, e.g., Ref.@10#!.
More recently it was shown@30# that the distribution of in-
dividual wealth of the 400 richest people in the United Sta
~Forbes 400! corresponds to a power law witha51.36
@more precisely,W(n)5Cn21/a, whereW(n) is the wealth
of thenth richest person on the list#. Recent analysis of stoc
market returns, measured over many years, found a trunc
Lévy distribution La(r ) with the indexa51.4 for an ex-
tended~but finite! range of returnsr @31#. These results in-
dicate that the property observed in our model, namely,
the same value of the indexa appears both in the power-law
distribution and in the Le´vy-stable distribution of the fluc-
tuations, may be of relevance in the economic context.
explore this possibility, further it would be interesting to e
rt

et

ys
e

of
n
-
a
-

e

-

s
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at

o

amine whether the distribution of total market values of co
panies in the stock market exhibits a power-law behavior
the form of Eq.~13!, with a51.4.

V. SUMMARY

We have studied a generic model of stochastic autoc
lytic dynamics of many degrees of freedom using compu
simulations. The model consists of dynamic variableswi , i
51, . . . ,N, which are updated randomly one at a tim
through an autocatalytic process at the individual level.
addition, the variables are coupled through a lower bou
constraint which enhances the variables which fall below
fraction of the global average. The model may describ
large variety of systems such as stock markets and city po
lations. The distributionp(w,t) of the system component
wi turns out to fulfill a power-law distribution of the form
p(w,t);w212a. In the limit N5`, c˜0, one obtains the
case often encountered in nature:a'1. The averagew̄(t)
exhibits intermittent fluctuations following a Le´vy-stable dis-
tribution with the same indexa. This relation between the
distribution of system components and the temporal fluct
tions of their average may be relevant to a variety of emp
cal systems. For example, it may provide a connection
tween the distribution of wealth/capitalization in a sto
market and the distribution of the index fluctuations.
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