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A generic model of stochastic autocatalytic dynamics with many degrees of freedpi=1, ... N, is
studied using computer simulations. The time evolution ofvitie combines a random multiplicative dynam-
icsw;(t+1)=xw;(t) at the individual level with a global coupling through a constraint which does not allow
the w;’s to fall below a lower cutoff given by:W, wherew is their momentary average andk@<1 is a
constant. The dynamic variables are found to exhibit a power-law distribution of the fomw)~w~1" ¢
The exponentx(c,N) is quite insensitive to the distributiod (\) of the random factoh, but it is nonuni-
versal, and increases monotonically as a functior.ofhe “thermodynamic” limitN—o and the limit of
decoupled free multiplicative random walks—0 do not commute:i«(ON)=0 for any finite N while
a(c,°)=1 (which is the common range in empirical systerfts any positivec. The time evolution oiTv(t)
exhibits intermittent fluctuations parametrized bytrmincated Lévy-stable distributiori ,(r) with the same
index «. This nontrivial relation between the distribution of thg’s at a given time and the temporal
fluctuations of their average is examined, and its relevance to empirical systems is discussed.
[S1063-651%99)09707-X

PACS numbdps): 05.40—a, 05.70.Ln, 02.50:r

[. INTRODUCTION The dynamic variabless; are found to exhibit a power-law
distribution of the formp(w)~w~ 1~ ¢ The exponent is
The origins of power-law distributions as well as their found to be insensitive to the distributidh(A) of the ran-
conceptual implications have been an active topic of researcom factorA. However, a is nonuniversal, and increases
in recent years. Power laws are intrinsically related to thénonotonically as a function af. In the limit c=0 (where
emergence of macroscopic features which are scale invariaHt® Wi'S become decoupleda=0 for any finite N How-

within some bounds, and distinct from the microscopic gl-EVer, I the thermodyngnyc ImitN =0, =1 fo.r any
.Eosmve ¢ Thus the two limits do not commute. This is im-

emer_lt_ary de%reeds of_lfre?d%m. then, th(_ase features a\;\(/a : ortant for applications since typically in empirical systems
sensitive to the details of the microscopic structures. Well, _ 4 [1-14] unlike the case of the free multiplicative ran-

known examples of power-law distributions include the en-gom walk which predicts a log-normal distributig2,23
ergy distribution between scales in turbulefit§ the distri- corresponding tar=0 [24].
bution of earthquake magnitudg2], the diameter distribu- The time evolution ofw(t) exhibits intermittent fluctua-
tion of craters and asteroids], the distribution of city tions parametrized by a truncated vyestable distribution
populations{4,5], the distributions of income and of wealth with the same index. This intricate relation between the
[6—12, the size distribution of business firf3,14 and the  distribution of thew;’s at a given time and the temporal
distribution of the frequency of appearance of words in textgluctuations of their average is examined, and its relevance to
[4]. The fact that multiplicative dynamics tends to generateempirical systems is discussed. Our model indicates that in
power-law distributions was intuitively invoked long ago certain cases the scaling exponent may be insensitive to the
[13,15-17, but the limitations in computer simulation power distribution of the multiplicativerandon factor \, and de-
kept the models under the constraints imposed by the applpends only on the “lower bound” features which control the
cability of analytical treatment. More recently, a broadersmallest values of the elementary variables. The relation be-
class of models has been studied combining computer simiiween the limiting conditions and the power-law exponent is
lations with theoretical analysis within the microscopic rep-to be applied in each particular case, and it constitutes a
resentation paradigm proposed in R@f8]. In particular, it ~ Strong instrument in identify_ing and validating the relevant
was shown[19-21] that power laws appear in a variety of degrees of freedom responsible for the emergence of scal_lng.
dynamical processes, and are maintained even under highly The present paper proposes to consolidate by numerical
nonstationary conditions. 's|mu_lat|ons.the control one ha}s ona speqﬁc model, and help
In this paper we consider a generic model of stochastid” this way its further application to additional systems. The

: ; . . paper is organized as follows. In Sec. Il we present the
dynamics - with many degrees of freedomw;(t), i model. Simulations and results are reported in Sec. lll, fol-

=1, ... N. The time evolution of thev;'s is described by an ) T i
asynchronous update mechanism in which at each time sté%wed by a discussion in Sec. IV and a summary in Sec. V.
one variable is chosen randomly and is multiplied by a factor Il. MODEL

\ taken from a predefined distribution. In addition, there is a

global coupling constraint which does not allow tigs to A. Formal definition

fall below the lower cutoff given bycw, wherew is the The model19,2( describes the evolution in discrete time
momentary average of the;’s and 0<c<1 is a constant. of N dynamic variablesw;(t), i=1,... N. At each time
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stept, an integeri is chosen randomly in the rangesi  the vicinity of the lower cutoff where the step of Ef)
<N, which is the index of the dynamic variable, to be  which is not taken into account by E¢h) may be dominant.
updated at that time step. A random multiplicative factor For the following analysis it is convenient to normalize
A(t) is then drawn from a given distributidd(\), which is  the w;’s according to

independent of andt and satisfied,II(A\)d\=1. This can _

be, for example, a uniform distribution in the rangg, wj(t)—w;(t)/w(t), j=1,...N. (6)
<A<\ Where i, and \ . are predefined limits. The _

system is then updated according to the following stochastiés a result, the new averagg(t) is normalized to

time evolution equation:

— N
w;(t+1)=N(t)w;(t), W(t)=fC wp(w,t)dw=1, (7

wit+D)=w;t), j=1,... N, j#i. @ while >,w;(t)=Nw=N. Performing this normalization step

ter each iteration removes the nonstationary part of the
istribution, and amounts statistically to an overall multipli-
cative factor. Thigtime dependentfactor which represents a

This is an asynchronous update mechanism. The avera
value of the system components at titnis given by

o 1 N global inflation rate can be recorded at each step. It is con-
w(t)=— > wi(t). (2)  venient to represent the dynamid. (5)] on a logarithmic
N = scale. In terms of the new variables,
The term on the right hand side of E(l) describes the W=Inw;, (8)

effect of autocatalysis at the individual level. In addition to

the update rule of Eql), the value of the updated variable Eq. (1) defines a random walk with steps of random sizg:In
w;(t+1) is constrained to be larger than or equal to some

lower bound which is proportional to the momentary average Wi(t+1)=W,;(t)+InX. 9

value of thew;’s according to _ e
The corresponding probability distributid®(W) becomes

wi(t+1)=cw(t), 3 P(W)=e"p(eW). (10

where O0<c<1 is a constant factor. This constraint is im-

posed immediately after std@) by setting In terms of P andW, the master equatiofb) becomes

P(W,t+1)—P(W,t)

w;(t+1)—maxw;(t+1),cw(t)}, (4)
1
wherew(t), evaluated just before the application of E, - N[ J;H()\)P(W—In)\,t)d)\— P(W.0)].
is used. This constraint describes the effect of autocatalysis
at the community level. (11)

. The asymptotic stationary solution, is found to [d€)]
B. Main features

Our model is characterized by a fixézbnserveginumber P(W)~e” %, (12)
of dynamic variable®, while the sum of their values is not - . .
conserved. The conservation of the number of dynamic varin terms of the orlgma_l vgrlablwi , according to Eq(10) we
ables, which is enforced through the lower cutoff constraint®Ptain & power-law distribution
is essential since otherwise the system dwindles over time.
The nonconservation of the sum of the values of the dynamic

variables is important as well. It allows us to perform thethe value of the exponent is determined by the normaliza-
multiplicative updating on a single variable at a time with no;5, condition[Eq. (7)] divided by the probability normaliza-
explicit binary interactions, since a gain w does not re- . condition Np(w,t)dw=1 (in order to eliminate the
quire a corresponding immediate loss by othg's. In fact, onstant factoKC) which yields

the interactions between the dynamic variables are implie& '

p(w)=Kw 179, (13

only in the step of Eq(4) in which the lower cutoff is im- cle
posed. The dynamic rulél) can be described by a master 1 (N) -1
equation for the probability distributiop(w) of the form N= aa e T |- (14)
1 Rk
p(w,t+1)=p(w,t)=5| [ TIM)p(W/X,t)d\—p(w,1)
A

©) The exponentx is given implicitly as a function ot andN
by Eg. (14). We identify two regimes within &c<1 in

where the I factor takes into account the fact that only onewhich Eq. (14) can be simplified andx can be obtained
of the w;’s is updated in each time step. This descriptionexplicitly. For a givenN and values ot in the range 1/IN
applies for the bulk of the distribution of thg,’s but not in  <c<1, one obtaingr>1 as well as ¢/N)“<c/N<1. Con-
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sequently, in this range, one can neglect thiN)“ terms in  the exponentx is largely independent of the shape of the
Eq. (14) to obtain to a good approximation probability distributionII(\). Figure 1 shows the distribu-
tion of w;, i=1,... N, obtained folN=1000,c=0.3, and

_ 0‘;1 -1 (15) N\ uniformly distributed in the range 0sO\<1.1. A power-
a c law distribution is found for a range of three decades be-

“IN tween w,,;;=0.0003 andw,,,,=0.3. The slope of the best

linear fit within this range is given bw= 1.4, in agreement

which gives the explicitN-independent solution with Egs.(14) and(16). On the horizontal axis of this graph
1 the sum of allw;’s is normalized to 1, and thereforns
a=— (169  =0.001. The exponent as a function of the lower cutoff

1-c is shown in Fig. 2. Numerical results are presentedNor

=100 (empty dot$, 1000(full dots), and 5000 squares The
prediction of Eq.(14) is shown forN=1000 (solid line),
which is in good agreement with the numerical results for all
values ofc. The approximate expressidiq. (16)] is also
shown (dashed ling It is observed that foN=1000 this
approximation gradually starts to hold ess increased be-
yond 1/In(1000), in agreement with the theoretical analysis.
In general, for a givem, « is monotonically increasing as a
function of ¢, starting froma =0 (which corresponds to W/
distribution atc=0, where thew;’s are uncoupled. It is also
observed that a$l is raised, the value ofr which corre-
a1l -1 sponds to a given increases monotonically. As a result, the
=—| —|. (17 range of validity 1/IMN<c<1 of the approximationEq.
a (E) (16)] is extended, and the knee adjacentcte0 sharpens
N and becomes a discontinuity fdd—oc. The range &c
] ) ) ) <1/N, in which the approximation of Eq(18) is valid,
By taking the logarithm on both sides and neglecting termspyinks correspondingly.
of order 1, we obtain Let us turn now to the dynamics of the system as a whole.
n N The dynamics of the system involves, according to @y.a
a= nNIG) (18)  9eneralized random walk with step sizes distributed accord-

ing to Eq.(13). Therefore, the stochastic fluctuationsvet)
after = time steps,

This relation is exact in the “thermodynamic” limil=co.
Relation(16) has two remarkable propertie®) it does not
depend on the distributiohl(\), and (b) it gives rise toa
values in the experimentally realistic range=1.

For finiteN and values ot lower than 1/InN, the approxi-
mation equatior{16) breaks down and values<1 become
possible. However, for any finithl, another approximation
holds in the range<1/N<1. In this range ¢/N)<<(c/N)“
<1, and therefore one can neglecfl)“ in the numerator
of Eq. (14) andc/N in the denominator to obtain

Note that even for systems in which the lower boywtiich
is due to some microscopic discretizatiogiven by c, is
orders of magnitude smaller thanNl/the resultinga may — —
differ significantly from the free multiplicative random walk ((r)= W(H'_) —w(t) (19)
result «=0. Sincec enters into formulg18) for a through w(t) '
its logarithm, the system gives away information on its mi-
croscopic scale cutoff through the exponert of its mac- _
roscopic power-law behavior. w0
One should emphasize that in the region wherel, the :

averagew of the distributionp(w) in Eq. (7) is not well :
defined, and in fact in the actual runs one expects very wide  10° ¢
macroscopic fluctuations of this mean. However, these fluc- 4 [
tuations are never infinite because, according to the formulas_, ;
above, as one increases the size of the sy$iethe region 2

Y i
along thec axis wherea<1 shrinks to 0. For ¥ a<?2, itis 10° |

only the standard deviation of the distributipfw) which is o7
formally divergent. This gives rise in the actual computer
simulations to wide fluctuations of the individual values of 10° ¢

w; . However, this divergence is also kept in check by the ;o [ =
fact that now; can possibly exceetlw, namely, p(Nw) E , , , 1
=0. This amounts to &uncation from abovef the power- 0.0001 0.0010 0.0100 0.1000 1.0000
law equation(13). ¥

FIG. 1. The distribution of the variables;, i=1,... N, for
IIl. NUMERICAL SIMULATIONS AND RESULTS N=1000 obtained from a numerical simulation of the model given
by Egs.(1) and (4) with the lower cutoffc=0.3 andII(\) uni-
Numerical simulations of the stochastic multiplicative formly distributed in the range 00\ <1.1. The distribution(pre-
process described by Eq4) and(4), confirm the validity of  sented here on a log-log scalexhibits a power-law behavior de-
Eq. (13) for a wide range of lower bounds It appears that scribed byp(w)~w ™1~ %, wherea=1.4.
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FIG. 2. The exponent of the power-law distribution of the
variablesw;, i=1, ... N as a function of the lower cutoff. The

data were obtained from the simulations of the multiplicative sto-

chastic process of Egél) and(4) with N= 100 (empty dot$, 1000
(full dots), and 5000(squares The theoretical prediction of Eq.
(14) is shown forN=1000 (solid line), and is in excellent agree-
ment with the numerical values for all valuesmfThe approximate
expression of Eq(16) is also showr(dashed ling

are governed25] by a truncated Ley distributionL ,(r).

In Fig. 3 we show the distribution of the stochastic fluc-
tuationsr (7) for =50, which is given by dtruncategl Lévy
distribution L ,(r). According to Ref.[26], the peak of the
(truncatedl Lévy-stable distribution scales with as

L (r=0)~7 Y (20

where « is the index of the Ley distribution. In Fig. 4 we
show the height of the pedk(r=0) of Fig. 3 as a function
of 7. It is found that the slope of the fit in Fig. 4 is0.71,
which, following the scaling relatiori20), means that the
index of the Ley distribution in Fig. 3 isa=—1/(—0.71)

10" |

P(0)

10 |

. .
1 10 100 1000
T

10

FIG. 4. The scaling withr of the probability thatr(7)=[w(t
+7)—w(t)]/w(t) is 0. The parameters of the process are the same
as in Figs. 1 and 3. The slope of the straight line on the logarithmic
scale is 0.71, which corresponds to aviiestable process witla
=1/0.71=1.4.

Fig. 1. Thus the prediction that the fluctuationswoin Fig.
3 follow a (truncated Lévy-stable distribution, with an index
a which equals the exponentof the power-law distribution
in Fig. 1, is confirmed.

IV. DISCUSSION

The model considered in this paper may be relevant to a
variety of empirical systems in the physical, biological, and
social sciences which can be described by a set of interacting
dynamic variables which follow a stochastic multiplicative
dynamics. Such dynamical processes may play a role in the
formation of the mass distribution in the universe where
clusters of galaxies accumulate and eventually form super-
clusters. In a different context, the growth of cities is basi-
cally a multiplicative process governed by the reproduction

=1.4. These results were obtained for the same parametergte of the local population in addition to mobility between

which gave rise to the power-law distribution with= 1.4 in

1000 -

P(r)

-0.020 0.000 0.020
r

FIG. 3. The distribution of the variations af after = steps
r(7)=[w(t+7)—w(t)]/w(t), where r=50, for the same param-
eters as in Fig. 1. This distribution has awestable shape with
index a=1.4.

cities.

Enhanced diffusion processes, which can be described by
the Levy-stable distribution, have been observed in a variety
of nonlinear dynamical systeni27,28. Unlike the stochas-
tic model studied here, these systems are governed by deter-
ministic rules. They exhibit intermittent chaotic motion
which gives rise to enhanced diffusion.

In population dynamics, the number of individuals in each
species varies stochastically from one season to the next with
a multiplicative factor which depends on the local condi-
tions. The lower bound may represent the minimal number
of individuals required for the species to survive in the given
environment. In this case the number of species may not be
strictly a constant, but species that are wiped out may be
replaced by others which invade their area. In this context it
was found that the number of species of a given size often
follows a decreasing power-law distribution as a function of
their size(see, e.g., Ref.29)).

In the economic context of a stock market system the
dynamic variablesw;, i=1,... N, may represent the
wealth of individual investors. In this case the dynamics rep-
resents the increager decreaseby a random factok (t) of
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the wealthw; of the investoii between timesandt+1. The  amine whether the distribution of total market values of com-

order to participate in stock market trading. In a more genhe form of Eq.(13), with a=1.4.
eral economic model, this lower bound may be related to a

basket of basic publicly funded services which every indi- V. SUMMARY
vidual receives. In another possible interpretation, ths ) ) .
represent the capitalizatidtotal market valugof the firmi, We have studied a generic model of stochastic autocata-

which may increaséor decreaseby a factorn(t) at each Iytic dynamics of many degrees of freedom using computer
time step. In this case the lower bound may represent thgimulations. The model consists of dynamic variables i

minimal requirements for a company stock to be publicly=1.....N, which are updated randomly one at a time
traded. through an autocatalytic process at the individual level. In

Studies of the distribution of wealth in the general popu-addition, the variables are coupled through a lower bound
lation revealed a power-law behavisee, e.g., Ref[10]). constraint which enhances the variables which fall below a
More recently it was showfi30] that the distribution of in-  fraction of the global average. The model may describe a
dividual wealth of the 400 richest people in the United Statedarge variety of systems such as stock markets and city popu-
(Forbes 4OD Corresponds to a power law withh=1.36 lations. The dlStrlbUthfp(W,t) of the system components
[more precise|yW(n):Cnfl/a, WhereW(n) is the wealth w; turns out to fulfill a pOWGr-laW distribution of the form
of thenth richest person on the [isRecent analysis of stock P(W,t)~w~'~“. In the limit N=%, c—0, one obtains the
market returns, measured over many years, found a truncatedse often encountered in natuee=1. The averagev(t)
Lévy distribution L ,(r) with the indexa=1.4 for an ex- exhibits intermittent fluctuations following a kg-stable dis-
tended(but finite) range of returns [31]. These results in- tribution with the same index:. This relation between the
dicate that the property observed in our model, namely, thadistribution of system components and the temporal fluctua-
the same value of the index appears both in the power-law tions of their average may be relevant to a variety of empiri-
distribution and in the [ey-stable distribution of the fluc- cal systems. For example, it may provide a connection be-
tuations, may be of relevance in the economic context. Tdween the distribution of wealth/capitalization in a stock
explore this possibility, further it would be interesting to ex- market and the distribution of the index fluctuations.
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